Producing 300 Bushel

nSustainab

Mand Laura Gentr Crop Physiology Laboratory **Department of Crop Sciences** University of Illinois at Urbana-Champaign

2011 Fluid Fertilizer Foundation Forum Scottsdale, AZ February 21, 2011

Quest for 300 Bushel Corn

Herman Warsaw's farm Saybrook, IL July 1985

Seven Wonders of Corn Yield

- Ranks factors that can have a positive (and sometimes negative) impact on corn yield
- •Gives each factor an average bushel per acre value
- •Given key prerequisites like drainage, fertility, weed control

Seven Wonders of the Corn Yield World

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6	Tillage	15
7	Growth Regulators	10

Given key prerequisites

Leaf greening from Strobilurin Fungicides

Leaves greener 60 days after VT application

Seven Wonders of the Corn Yield World

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6	Tillage	15
7	Growth Regulators	10
en key prereq	TOTAL uisites	260 bu

Given key prerequisites

Seven Wonders of the Corn Yield World

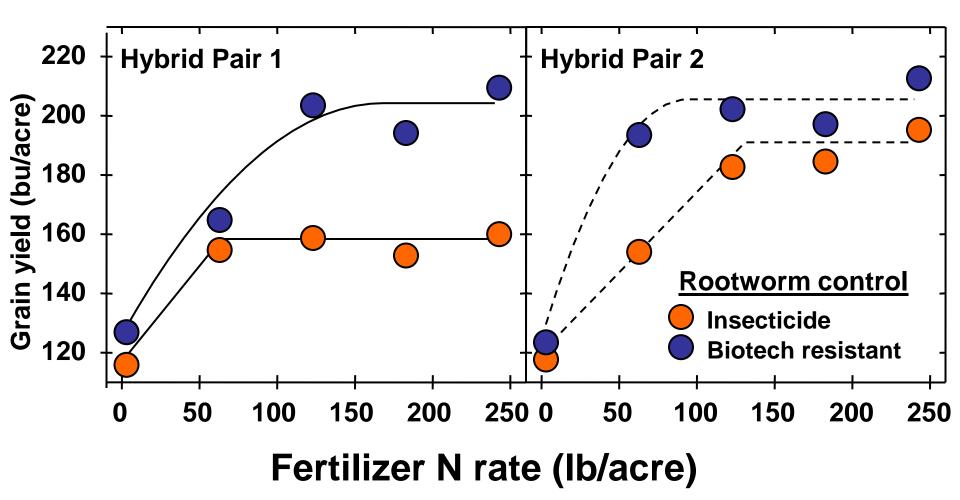
Rank	Factor	Value	
		bu/acre	%
1	Weather	70+	27
2	Nitrogen	70	26
3	Hybrid	50	19
4	Previous Crop	25	10
5	Plant Population	20	8
6	Tillage	15	6
7	Growth Regulators	10	4
	Total =	260bu	100%

How to Get 300 Bushels?

- Provide better prerequisites, especially mineral nutrients
- Try to optimize each of the seven wonders and their positive interactions

Prerequisites for 300 Bushels?

- Proper soil pH & adequate levels of P and K based on soil tests
- Fertility- Required amounts of nutrients each year, Sulfur & Micronutrients?


Where are the Positive Interactions?

Rank	Factor	Valu	le
		bu/acre	%
1	Weather	70+	27
2	Nitrogen	70	26
3	Hybrid	50	19
4	Previous Crop	25	10
5	Plant Population	20	8
6	Tillage	15	6
7	Growth Regulators	5 10	4
	Total =	260bu	100%
on kov nre	oraquicitae		CRO

Given key prerequisites

Better N use from Biotechnology Traits

Champaign, IL 2008

Better N use from Biotechnology Traits

Hybrid	ybrid NUE Upta		Utilization
	kg/kg N	%	kg/kg N
RW-Bt	25.9*	71*	36.4
Non-RW	17.0	52	33.1
RW-Bt	31.7*	71*	44.6
Non-RW	22.4	56	40.1

*different from non-RW counterpart P< 0.05

Greater Nutrient Removal with Grain as a Result of Biotechnology Traits

Nutrient	Non RWRoot wormresistantresistant		Difference
	bushels or lb	s/acre removed	%
Yield	179	205	15
Ν	110	126	14
Ρ	17	21	24
Κ	26	31	19
S	8.9	10.4	17
Zn (oz)	2.2	2.8	27

CROF

How to Get 300 Bushels?

- Better prerequisites along with packages of optimized yield wonders.
- Is the value of combined factors greater than their individual impact?

Seven Wonders of the Corn Yield World

Rank	Factor	Value
		bu/acre
1	Weather	70+
2	Nitrogen	70
3	Hybrid	50
4	Previous Crop	25
5	Plant Population	20
6	Tillage	15
7	Growth Regulators	10
Improved Ferti	lity Prerequisites Total	260 bu

Standard vs High Tech Package

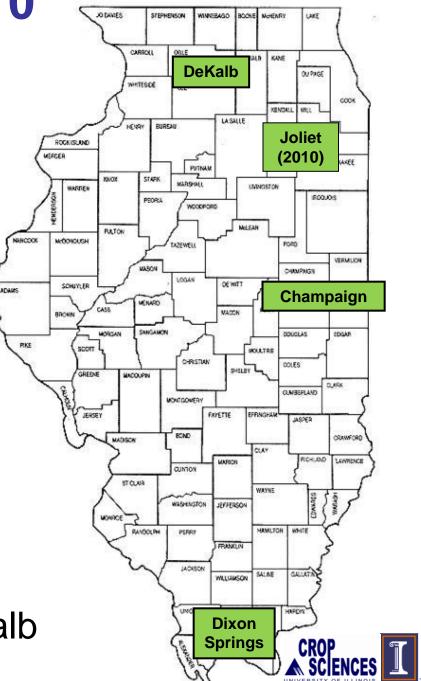
- FertilityNo P or K based on soil test100 lbs P2O5 as MESZ (N, P, S, & Zn)
- Nitrogen180 lbs pre-plant as UAN100 lbs extra N sidedress as Super-U
- GeneticsRR Refuge Hybrid (DKC 61-22)Triple stack Hybrid (DKC 61-19)Both with soil insecticide at planting

Population32,000 plants/ac vs 45,000 plants/acBoth in 30 inch rows and twin rows in 2010

FungicideNo FungicideHeadline or Quilt-Xcel (@ R1)

Best High Yield Factors- Omission Plot

				FACTOR		
	TREATMENT	Fertility	Nitrogen	Genetics	Population	Fungicide
	HIGH TECH	MESZ	Base + Slow release	Triple stack	45,000	Strobilurin
ogy	Fertility	No P & K	Base + Slow release	Triple stack	45,000	Strobilurin
lou	Nitrogen	MESZ	Base	Triple stack	45,000	Strobilurin
Decrease Technology	Genetics	MESZ	Base + Slow release	Refuge	45,000	Strobilurin
rease	Population	MESZ	Base + Slow release	Triple stack	32,000	Strobilurin
Dec	Fungicide	MESZ	Base + Slow release	Triple stack	45,000	none
	TRADITIONAL	No P & K	Base	Refuge	32,000	none
Ŋ	Fertility	MESZ	Base	Refuge	32,000	none
Add Technology	Nitrogen	No P & K	Base + Slow release	Refuge	32,000	none
ech	Genetics	No P & K	Base	Triple stack	32,000	none
T bb	Population	No P & K	Base	Refuge	45,000	none
Ϋ́	Fungicide	No P & K	Base	Refuge	32,000	Strobilurin


Omission Plots 2009-10

All Sites in both Years

- Medium to high soil P & K
- 180 lbs base N as UAN
- DKC 61-19 or 61-22
- Soybean as previous crop
- Conventional tillage
- 30 inch & twin-rows in 2010

Weather

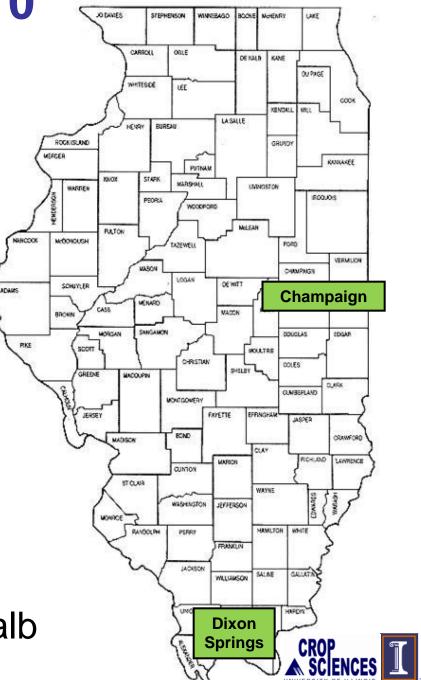
- Wet spring in both years
- Abnormally cool in 2009
- Abnormally hot in 2010
- Early frost (2009) or severe wind damage (2010) in DeKalb

Weather Damage at DeKalb - 2010

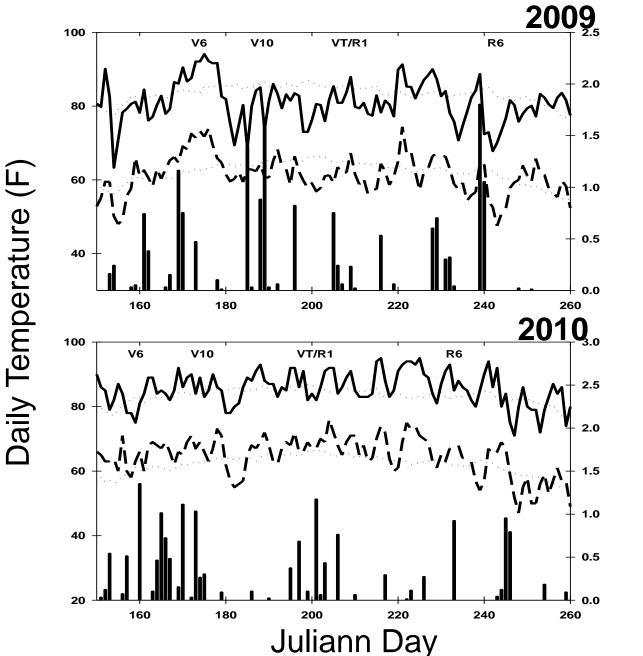
Severe wind damage at R3

Equipment Natural Disaster at Joliet -2010

Yield loss due to combine fire


Omission Plots 2009-10

All Sites in both Years


- Medium to high soil P & K
- 180 lbs base N as UAN
- DKC 61-19 or 61-22
- Soybean as previous crop
- Conventional tillage
- 30 inch & twin-rows in 2010

Weather

- Wet spring in both years
- Abnormally cool in 2009
- Abnormally hot in 2010
- Early frost (2009) or severe wind damage (2010) in DeKalb

Different Weather Between Years- Champaign, IL

Precipitation (Inches

High Tech Package vs Traditional Champaign-2009

Ears from 1/1000 of an acre

High Technology Package

Standard Practice

Yield Enhancement with High Tech Package

Location	Traditional Practice	High Tech Package	Δ
	bu a	cre ⁻¹	
Champaign	208	274	66*
Dixon Springs	188	245	57*

* Significance difference (p<0.10)

Data from 2009

Traditional vs High Tech - 2009						
	Traditi	ional	High T	ech		
Factor	Yield	Δ	Yield	Δ		
		bu acre-1				
None or All	198		260			
Fertility	202	+ 4	248	-12		
Nitrogen	206	+ 8	240	-20		
Genetics	208	+10	235	-25		
Population	185	-13	250	-10		
Fungicide	198	0	242	-18		

LSD (p<0.10) = 6 Data from Champaign and Dixon Springs

Yield Enhancement with High Tech Package

Location	Traditional Practice	High Tech Package	Δ
	bu a	cre ⁻¹	
Champaign	192	232	40 *
Dixon Springs	183	228	45*

* Significance difference (p<0.10)

Data from 2010

Traditional vs High Tech - 2010						
	Traditi	onal	High T	ech		
Factor	Yield	Δ	Yield	Δ		
	bu acre-1					
None or All	188		230			
Fertility	192	+ 4	225	- 5		
Nitrogen	190	+ 2	225	- 5		
Genetics	196	+ 8	215	-15		
Population	190	+ 2	226	- 4		
Fungicide	199	+11	195	-35		

LSD (p<0.10) = 7 Data from Champaign and Dixon Springs

Traditional vs High Tech – Two Years				
	Traditional		High Tech	
Factor	Yield	Δ	Yield	Δ
	bu acre-1			
None or All	193		245	
Fertility	197	+ 4	236	- 9
Nitrogen	198	+ 5	232	-13
Genetics	202	+ 9	225	-20
Population	187	- 6	238	- 7
Fungicide	198	+ 5	218	-27
1 SD (n < 0.10) = 6		_		

LSD (p<0.10) = 6

Data from Champaign and Dixon Springs

What is Agricultural Sustainability?

Assemble Complementary Technologies that Individually Impact Yield

more corn per unit area & greater input-use efficiency